
May 2008 FoxRockX Page 2

Use the right loop
for the job
Tamar E. Granor, PhD

I came to the Fox world from Pascal. While I'd
worked with several other languages over the
years, Pascal was the one that I loved, that I'd
taught to dozens of undergraduates and that I'd
used for both my Master's thesis and my PhD.

One of the cool things about Pascal was that it
had not one, not two, but three loop constructs.
WHILE and REPEAT-UNTIL were similar, con-
tinuing a loop until some condition was met. The
difference between the two was when the condi-
tion was checked and whether the loop stopped
when the condition failed or when the condition
was met. FOR provided a counted loop. What
more could a programmer need?

When I started working with FoxBASE++, I
found it had only one way to write a loop. DO
WHILE worked just like Pascal's WHILE, but
there was no counted loop construct, nor any con-
cept of a loop that didn't check its condition until
after the first pass. Of course, I could achieve the
same results with DO WHILE, but I missed hav-
ing other options.

As time went by, looping choices in FoxPro
improved. While VFP still doesn’t include an ana-
logue of REPEAT-UNTIL, there are now no fewer
than four different ways to construct a loop. So
how do you know which one to use in a given
situation? There are some fairly simple rules.

Looping through tables and cursors
Back in the early days of Xbase, we had to use DO
WHILE to loop through a table (there was no such
thing as a cursor then), like this:

GO TOP
DO WHILE NOT EOF()
 * Do whatever you need to this record
 SKIP
ENDDO

This structure worked, but you had to re-
member to put SKIP at the end of the loop and if
you changed work areas within the loop, you had
to make sure to change back before you reached
SKIP or your code would fail.

The addition of the SCAN command made

looping through tables much easier. The basic
SCAN loop looks like this:

SCAN
 * Do whatever you need to this record
ENDSCAN

SCAN has four advantages over DO WHILE
NOT EOF(). First, unless you include the optional
WHILE clause, it always starts at the top of the
table.

Second, the SKIP is built in; you don't need to
code it.

Third, at the end of each pass, it automatically
returns to the controlling work area, whichever
work area was selected when execution reached
the SCAN command.

Fourth, in most cases, SCAN is faster than the
equivalent DO WHILE loop. In my tests, looping
through an unordered table and doing nothing
else, SCAN took about 70% of the time of DO
WHILE.

Things change somewhat if you use an or-
dered table. In the same tests, if I SET ORDER TO
an index tag, SCAN’s advantage changed to about
80% of DO WHILE’s time. In fact, the relative
times depend on the tag you use. Over the years, I
have seen a few cases where using a particular
index order, DO WHILE was faster by as much as
20%, but usually SCAN has the advantage.

What if you only want to work with some of
the records, that is, you need to filter the data?
Both loop constructs can handle this, but there are
some caveats.

DO WHILE continues as long as its condition
is true. When you add a condition other than
NOT EOF(), the loop continues only as long as
records meet that condition. If you can't order the
data so that all the records you want to process
are together, then you need to use an IF statement
inside the loop, rather than adding the condition
to the loop. For example, using the Northwind
Customers table, suppose you want to work with
all customers in the UK. This loop won’t find
them all:

Page 3 FoxRockX May 2008

GO TOP
DO WHILE NOT EOF() AND Country = "UK"
 * Do something with this record
 SKIP
ENDDO

Since there's no tag available for country, to
make sure you find each UK customer with DO
WHILE, you need code like this:

GO TOP
DO WHILE NOT EOF()
 IF Country = "UK"
 * Do something with this record
 ENDIF
 SKIP
ENDDO

SCAN offers a better alternative in this case;
add the FOR clause, like this:

SCAN FOR Country = "UK"
 * Do something with this record
ENDSCAN

Sometimes, you can order the data so that all
the records you want to process are together. In
that case, stay away from SCAN FOR and use
SCAN WHILE instead; in general, it will be much
faster, since it only visits the matching records.
This example visits every record in the Nothwind
OrderDetails table for a particular product:

SELECT OrderDetails
SEEK m.nProductID
SCAN WHILE ProductID = m.nProductID
 * Do something with this record
ENDSCAN

In my tests, SEEK followed by SCAN WHILE
is the fastest, but SEEK followed by DO WHILE is
nearly as fast.

A final note on looping through tables: Often,
there's actually no reason to do processing in a
loop. Most of the Xbase commands in VFP accept
FOR and WHILE clauses, so that all relevant re-
cords can be processed in a single command. Save
loops for those times when you need to do more
complex processing.

Counted Loops
More often than looping through a table, I need to
write a loop that executes a fixed number of times.
DO WHILE is up to the task, with a structure like
this:

nCount = m.nStart
DO WHILE m.nCount <= m.nEnd
 * Do whatever you need to
 nCount = m.nCount + 1
ENDDO

Once again, though, VFP offers a better alter-
native, the FOR loop. Instead of the code above,
use code like this:
FOR m.nCount = m.nStart TO m.nEnd

 * Do whatever you need to
ENDFOR

As with SCAN, FOR lets you omit the state-
ment that keeps the loop moving; the loop vari-
able is incremented automatically. Also, like
SCAN, FOR is faster than DO WHILE. In this
case, the difference is more than an order of mag-
nitude. In my tests, using an otherwise empty
loop, DO WHILE takes 10 to 13 times longer than
FOR.

There are a couple of things to be aware of
with FOR. First, the end value is evaluated only
once, when you enter the loop. That is, if you use
a variable or expression to specify the last value,
and do something in the loop that changes the
value of the variable or expression, the number of
passes doesn't change. For example, if you write
this:

nStart = 1
nEnd = 200
FOR m.nCount = m.nStart TO m.nEnd
 * Do whatever you need to
 nEnd = 100
ENDFOR

the loop still executes 200 times. You can't short-
circuit it by changing the end variable; use EXIT
instead.

Second, FOR has an optional STEP clause that
lets you count by something other than ones. You
can specify any positive or negative number; it
doesn't even have to be an integer. So you could
write code like this:

FOR nValue = 0 TO 1 STEP .1
 * nValue will be 0, 0.1, 0.2, etc.
ENDFOR

VFP is smart enough that it tests whether
you've passed the endpoint, rather than testing
whether you've exactly matched it. So you can
even write:

FOR nValue = 0 TO 5 STEP .3
 * nValue will be 0, 0.3, 0.6, etc.
ENDFOR

This loop stops when nValue = 5.1; during the
last pass through the loop, nValue = 4.8.

The ability to specify negative numbers
means you can work backwards. In that case, be
sure to make the start value larger than the end
value. For example, you might write a loop like
this:

FOR nValue = 500 TO 0 STEP -50
 * nValue will be 500, 450, 400, etc.
ENDFOR

Unless you need to test additional conditions,
there's no reason ever to use DO WHILE for a

May 2008 FoxRockX Page 4

counted loop. Even if you have additional condi-
tions to test, you may be better off using IF and
EXIT inside the loop.

What is DO WHILE good for?
If DO WHILE isn't the best choice for looping
through tables and cursors or for counted loops,
when is it appropriate? When you need to do
something until a condition changes, that is, ex-
actly for the cases its name implies.

Most of the DO WHILE loops I write look
something like this:

lFound = .F.
DO WHILE NOT m.lFound
 * Do something that sets lFound
ENDDO

For example, in a class that generates test
data, I need to create a unique ID number that's
random rather than ordered (to replicate the real
world). I use this loop:

lNewNum = .F.
DO WHILE NOT m.lNewNum
 nNumber = This.RandInt(10000000, 99999999)
 cNumber = TRANSFORM(m.nNumber)

 * Check whether it exists already
 IF NOT SEEK(m.cNumber, "__StudNums",;
 "cNumber")
 lNewNum = .T.
 INSERT INTO __StudNums ;
 VALUES (m.cNumber)
 ENDIF
ENDDO

The RandInt method returns a random integer
between the parameters supplied. Then, I search
the list of ID numbers already generated. If this
one isn't there, I add it and set the lNewNum flag
to .T. to end the loop.

Looping through collections
VFP has one additional looping construct that
wasn't needed back in the old days. Both VFP it-
self and the many Automation servers it can talk
to use collections to hold sets of similar items. For
example, on a VFP form there's a collection called
Objects that contains an object reference to each
control on the form. When automating Word, you
can talk to its Documents collection or to an indi-
vidual document's Paragraphs collection. VFP has
built-in collections for forms.

Although you can traverse a collection using a
FOR loop, VFP also supports the FOR EACH
loop, designed specifically for walking through
collections. To go through a collection with a FOR
loop, you use code like this:

FOR nItem = 1 TO ThisForm.Objects.Count
 oObject = This.Objects[m.nItem]
 * Do what you need to with oObject
ENDFOR

The analogous FOR EACH loop looks like
this:

FOR EACH oObject IN ThisForm.Objects FOXOBJECT
 * Do what you need to with oObject
ENDFOR

There is one big difference. In my experience,
although the two loops process the items in the
same order, you can't always count on it. FOR
EACH promises only to visit each item in the col-
lection; it doesn't make any guarantees about the
order in which they'll be processed. In my tests,
FOR EACH is about twice as fast as FOR.

The FOXOBJECT keyword needs some expla-
nation. Prior to VFP 8, there were only a few col-
lections native to VFP, like the form's Controls
collection and the grid's Columns collection. Most
of the collections you needed to deal with, includ-
ing some that appeared to be native like the Pro-
jects and Files collections, were actually COM ob-
jects. As a result, FOR EACH was designed to
work with COM objects. By default, the object it
hands you each pass through the loop is a COM
object.

In VFP 8, the Collection base class was added,
giving us the ability to create our own native col-
lections. Suddenly, having FOR EACH provide
COM objects caused problems. Those objects did-
n't behave the way we expected. Not only that,
but FOR EACH loops were slow.

The FOXOBJECT keyword was added in VFP
9. When you add it to FOR EACH, the objects
you're working with inside the loop are native
VFP objects. Using FOXOBJECT, not only do the
objects behave as expected, but FOR EACH with-
out FOXOBJECT takes about 10 to 20 times as
long as FOR EACH with FOXOBJECT. The bot-
tom line is that when working with a native col-
lection, you should always add FOXOBJECT to
FOR EACH.

There is one situation where you must use
FOR rather than FOR EACH. That's when you're
removing items from the collection inside the
loop. Assume oColl is a collection containing
some items, where each item has a cKey property,
indicating its key in the collection. Consider this
code to delete all the items from the collection,
one by one:

FOR EACH oItem IN oColl FOXOBJECT
 oColl.Remove(m.oItem.cKey)
ENDFOR

In fact, only half the items get removed. Inter-
nally, VFP must use a pointer of some sort to keep
track of its position in the collection. When you
remove an item, you mess up the internal pointer.

A FOR loop, running backwards through the

Page 5 FoxRockX May 2008

collection, solves the problem:

FOR nItem = oColl.Count TO 1 STEP -1
 oItem = oColl[m.nItem]
 oColl.Remove(m.oItem.cKey)
ENDFOR

Of course, to remove all items from a collec-
tion, you can simply pass -1 to the Remove
method, so this loop, as written, is unnecessary.
However, the same principle applies to a loop
where you're doing some testing to determine
whether to remove an item.

A final note: FOR EACH can be used with ar-
rays as well as collections. However, I've never
found a reason to do so. With an array, I generally
like the guarantee of processing items in order.

Happy looping
Learning to use the right loop for the situation
will make your code faster and more readable.
Both of those goals are worth breaking old habits
and building new ones.

The Downloads for this article include pro-
grams to test the speed differences between DO
WHILE and SCAN, DO WHILE and FOR, and
FOR and FOR EACH (with and without FOXOB-
JECT).

Tamar E. Granor, Ph.D. is the owner of Tomorrow's
Solutions, LLC. She has developed and enhanced nu-
merous Visual FoxPro applications for businesses and
other organizations. She currently focuses on working
with other developers through consulting and subcon-
tracting. Tamar is author or co-author of nine books
including the award winning Hacker's Guide to Visual
FoxPro and Microsoft Office Automation with Visual
FoxPro. Her most recent books are Taming Visual Fox-
Pro's SQL and What's New in Nine: Visual FoxPro's
Latest Hits. Her books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar is a Mi-
crosoft Certified Professional and a Microsoft Support
Most Valuable Professional. Tamar speaks frequently
about Visual FoxPro at conferences and user groups in
North America and Europe, including every FoxPro
DevCon since 1993. You can reach her at
tamar@thegranors.com or through
www.tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2008 ISYS GmbH. This work is an independently produced publication of
ISYS GmbH, Kronberg, the content of which is the property of ISYS GmbH or its affili-
ates or third-party licensors and which is protected by copyright law in the U.S. and
elsewhere. The right to copy and publish the content is reserved, even for content
made available for free such as sample articles, tips, and graphics, none of which may
be copied in whole or in part or further distributed in any form or medium without the
express written permission of ISYS GmbH. Requests for permission to copy or repub-
lish any content may be directed to Rainer Becker.

FoxRockX, FoxTalk 2.0 and Visual Extend are trademarks of ISYS GmbH. All product names or services identified
throughout this journal are trademarks or registered trademarks of their respective companies.

Alive and Kicking!
Continued from page 1

See the website for details (http://guineu.fox-
pert.com). Craig Boyd and Bo Durban have been
working on VFP Studio – a full featured devel-
opment environment that seamlessly integrates
many .NET Features and capabilities into Visual
FoxPro. (See http://www.sweetpotatosoftware
.com/SPSBlog/PermaLink,guid,b71ea97e-8fb8-
4401-ace4-b5a536fe0a37.aspx for details).
There are new books being written for Visual
FoxPro too. Tamar Granor has gathered a great
team of authors to produce the VFP9 "Sedna up-
date" book soon. And Jim Booth is back - see his
article in this issue - he is updating his very suc-

cessful "Effective Techniques for Application De-
velopment with Visual FoxPro" to include VFP 9.0
features. Both books will be available at
http://shop.dfpug.com and http://www.hen-
tzenwerke.com later this year. Whil Hentzen has
also mentioned that he is working on another
book or two regarding Visual FoxPro. Stay tuned!
FoxRockX is published bimonthly with 24 pages
DIN A4 plus advertising. All subscriptions in-
clude access to the complete online archive of
FoxTalk and many other documents and articles.
We took over from FoxTalk which published 12
issues a year with 16 pages each for a total of 192
pages. We plan for 6 regular issues and two spe-
cial issues with 24 pages for the same 192 pages
total per year. For more details see
http://www.foxrockx.com

